mirror of
https://github.com/denoland/std.git
synced 2024-11-21 12:40:03 +00:00
4830d4d4ac
Co-authored-by: ud2 <sjx233@qq.com>
133 lines
3.7 KiB
TypeScript
133 lines
3.7 KiB
TypeScript
// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
|
|
// This module is browser compatible.
|
|
const { ceil } = Math;
|
|
|
|
// This implements Myers' bit-vector algorithm as described here:
|
|
// https://dl.acm.org/doi/pdf/10.1145/316542.316550
|
|
const peq = new Uint32Array(0x110000);
|
|
|
|
function myers32(t: string[], p: string[]): number {
|
|
const n = t.length;
|
|
const m = p.length;
|
|
for (let i = 0; i < m; i++) {
|
|
peq[p[i]!.codePointAt(0)!]! |= 1 << i;
|
|
}
|
|
const last = m - 1;
|
|
let pv = -1;
|
|
let mv = 0;
|
|
let score = m;
|
|
for (let j = 0; j < n; j++) {
|
|
const eq = peq[t[j]!.codePointAt(0)!]!;
|
|
const xv = eq | mv;
|
|
const xh = (((eq & pv) + pv) ^ pv) | eq;
|
|
let ph = mv | ~(xh | pv);
|
|
let mh = pv & xh;
|
|
score += ((ph >>> last) & 1) - ((mh >>> last) & 1);
|
|
// Set the horizontal delta in the first row to +1
|
|
// because we are computing the distance between two full strings.
|
|
ph = (ph << 1) | 1;
|
|
mh = mh << 1;
|
|
pv = mh | ~(xv | ph);
|
|
mv = ph & xv;
|
|
}
|
|
for (let i = 0; i < m; i++) {
|
|
peq[p[i]!.codePointAt(0)!] = 0;
|
|
}
|
|
return score;
|
|
}
|
|
|
|
function myersX(t: string[], p: string[]): number {
|
|
const n = t.length;
|
|
const m = p.length;
|
|
// Initialize the horizontal deltas to +1.
|
|
const h = new Int8Array(n).fill(1);
|
|
const bmax = ceil(m / 32) - 1;
|
|
// Process the blocks row by row so that we can use the fixed-size peq array.
|
|
for (let b = 0; b < bmax; b++) {
|
|
const start = b * 32;
|
|
const end = (b + 1) * 32;
|
|
for (let i = start; i < end; i++) {
|
|
peq[p[i]!.codePointAt(0)!]! |= 1 << i;
|
|
}
|
|
let pv = -1;
|
|
let mv = 0;
|
|
for (let j = 0; j < n; j++) {
|
|
const hin = h[j]!;
|
|
let eq = peq[t[j]!.codePointAt(0)!]!;
|
|
const xv = eq | mv;
|
|
eq |= hin >>> 31;
|
|
const xh = (((eq & pv) + pv) ^ pv) | eq;
|
|
let ph = mv | ~(xh | pv);
|
|
let mh = pv & xh;
|
|
h[j] = (ph >>> 31) - (mh >>> 31);
|
|
ph = (ph << 1) | (-hin >>> 31);
|
|
mh = (mh << 1) | (hin >>> 31);
|
|
pv = mh | ~(xv | ph);
|
|
mv = ph & xv;
|
|
}
|
|
for (let i = start; i < end; i++) {
|
|
peq[p[i]!.codePointAt(0)!] = 0;
|
|
}
|
|
}
|
|
const start = bmax * 32;
|
|
for (let i = start; i < m; i++) {
|
|
peq[p[i]!.codePointAt(0)!]! |= 1 << i;
|
|
}
|
|
const last = m - 1;
|
|
let pv = -1;
|
|
let mv = 0;
|
|
let score = m;
|
|
for (let j = 0; j < n; j++) {
|
|
const hin = h[j]!;
|
|
let eq = peq[t[j]!.codePointAt(0)!]!;
|
|
const xv = eq | mv;
|
|
eq |= hin >>> 31;
|
|
const xh = (((eq & pv) + pv) ^ pv) | eq;
|
|
let ph = mv | ~(xh | pv);
|
|
let mh = pv & xh;
|
|
score += ((ph >>> last) & 1) - ((mh >>> last) & 1);
|
|
ph = (ph << 1) | (-hin >>> 31);
|
|
mh = (mh << 1) | (hin >>> 31);
|
|
pv = mh | ~(xv | ph);
|
|
mv = ph & xv;
|
|
}
|
|
for (let i = start; i < m; i++) {
|
|
peq[p[i]!.codePointAt(0)!] = 0;
|
|
}
|
|
return score;
|
|
}
|
|
|
|
/**
|
|
* Calculates the
|
|
* {@link https://en.wikipedia.org/wiki/Levenshtein_distance | Levenshtein distance}
|
|
* between two strings.
|
|
*
|
|
* > [!NOTE]
|
|
* > The complexity of this function is O(m * n), where m and n are the lengths
|
|
* > of the two strings. It's recommended to limit the length and validate input
|
|
* > if arbitrarily accepting input.
|
|
*
|
|
* @example Usage
|
|
* ```ts
|
|
* import { levenshteinDistance } from "@std/text/levenshtein-distance";
|
|
* import { assertEquals } from "@std/assert";
|
|
*
|
|
* assertEquals(levenshteinDistance("aa", "bb"), 2);
|
|
* ```
|
|
* @param str1 The first string.
|
|
* @param str2 The second string.
|
|
* @returns The Levenshtein distance between the two strings.
|
|
*/
|
|
export function levenshteinDistance(str1: string, str2: string): number {
|
|
let t = [...str1];
|
|
let p = [...str2];
|
|
|
|
if (t.length < p.length) {
|
|
[p, t] = [t, p];
|
|
}
|
|
if (p.length === 0) {
|
|
return t.length;
|
|
}
|
|
return p.length <= 32 ? myers32(t, p) : myersX(t, p);
|
|
}
|