std/encoding/varint.ts

165 lines
5.7 KiB
TypeScript
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
// Copyright 2020 Keith Cirkel. All rights reserved. MIT license.
// Copyright 2023 Skye "MierenManz". All rights reserved. MIT license.
/**
* Functions for encoding typed integers in array buffers.
*
* @module
*/
// This implementation is a port of https://deno.land/x/varint@v2.0.0 by @keithamus
// This module is browser compatible.
export const MaxUInt64 = 18446744073709551615n;
export const MaxVarIntLen64 = 10;
export const MaxVarIntLen32 = 5;
const MSB = 0x80;
const REST = 0x7f;
const SHIFT = 7;
const MSBN = 0x80n;
const SHIFTN = 7n;
// ArrayBuffer and TypedArray's for "pointer casting"
const AB = new ArrayBuffer(8);
const U32_VIEW = new Uint32Array(AB);
const U64_VIEW = new BigUint64Array(AB);
/**
* Given a non empty `buf`, starting at `offset` (default: 0), begin decoding bytes as
* VarInt encoded bytes, for a maximum of 10 bytes (offset + 10). The returned
* tuple is of the decoded varint 32-bit number, and the new offset with which
* to continue decoding other data.
*
* If a `bigint` in return is undesired, the `decode32` function will return a
* `number`, but this should only be used in cases where the varint is
* _assured_ to be 32-bits. If in doubt, use `decode()`.
*
* To know how many bytes the VarInt took to encode, simply negate `offset`
* from the returned new `offset`.
*/
export function decode(buf: Uint8Array, offset = 0): [bigint, number] {
// Clear the last result from the Two's complement view
U64_VIEW[0] = 0n;
// Setup the initiat state of the function
let intermediate = 0;
let position = 0;
let i = offset;
// If the buffer is empty Throw
if (buf.length === 0) throw new RangeError("Cannot read empty buffer");
let byte;
do {
// Get a single byte from the buffer
byte = buf[i]!;
// 1. Take the lower 7 bits of the byte.
// 2. Shift the bits into the correct position.
// 3. Bitwise OR it with the intermediate value
// QUIRK: in the 5th (and 10th) iteration of this loop it will overflow on the shift.
// This causes only the lower 4 bits to be shifted into place and removing the upper 3 bits
intermediate |= (byte & 0b01111111) << position;
// If position is 28
// it means that this iteration needs to be written the the two's complement view
// This only happens once due to the `-4` in this branch
if (position === 28) {
// Write to the view
U32_VIEW[0] = intermediate;
// set `intermediate` to the remaining 3 bits
// We only want the remaining three bits because the other 4 have been "consumed" on line 21
intermediate = (byte & 0b01110000) >>> 4;
// set `position` to -4 because later 7 will be added, making it 3
position = -4;
}
// Increment the shift position by 7
position += 7;
// Increment the iterator by 1
i++;
// Keep going while there is a continuation bit
} while ((byte & 0b10000000) === 0b10000000);
// subtract the initial offset from `i` to get the bytes read
const nRead = i - offset;
// If 10 bytes have been read and intermediate has overflown
// it means that the varint is malformed
// If 11 bytes have been read it means that the varint is malformed
// If `i` is bigger than the buffer it means we overread the buffer and the varint is malformed
if ((nRead === 10 && intermediate > -1) || nRead === 11 || i > buf.length) {
throw new RangeError("malformed or overflow varint");
}
// Write the intermediate value to the "empty" slot
// if the first slot is taken. Take the second slot
U32_VIEW[Number(nRead > 4)] = intermediate;
return [U64_VIEW[0], i];
}
/**
* Given a `buf`, starting at `offset` (default: 0), begin decoding bytes as
* VarInt encoded bytes, for a maximum of 5 bytes (offset + 5). The returned
* tuple is of the decoded varint 32-bit number, and the new offset with which
* to continue decoding other data.
*
* VarInts are _not 32-bit by default_ so this should only be used in cases
* where the varint is _assured_ to be 32-bits. If in doubt, use `decode()`.
*
* To know how many bytes the VarInt took to encode, simply negate `offset`
* from the returned new `offset`.
*/
export function decode32(buf: Uint8Array, offset = 0): [number, number] {
for (
let i = offset,
len = Math.min(buf.length, offset + MaxVarIntLen32),
shift = 0,
decoded = 0;
i <= len;
i += 1, shift += SHIFT
) {
const byte = buf[i]!;
decoded += (byte & REST) * Math.pow(2, shift);
if (!(byte & MSB)) return [decoded, i + 1];
}
throw new RangeError("malformed or overflow varint");
}
/**
* Takes unsigned number `num` and converts it into a VarInt encoded
* `Uint8Array`, returning a tuple consisting of a `Uint8Array` slice of the
* encoded VarInt, and an offset where the VarInt encoded bytes end within the
* `Uint8Array`.
*
* If `buf` is not given then a Uint8Array will be created.
* `offset` defaults to `0`.
*
* If passed `buf` then that will be written into, starting at `offset`. The
* resulting returned `Uint8Array` will be a slice of `buf`. The resulting
* returned number is effectively `offset + bytesWritten`.
*/
export function encode(
num: bigint | number,
buf: Uint8Array = new Uint8Array(MaxVarIntLen64),
offset = 0,
): [Uint8Array, number] {
num = BigInt(num);
if (num < 0n) throw new RangeError("signed input given");
for (
let i = offset, len = Math.min(buf.length, MaxVarIntLen64);
i <= len;
i += 1
) {
if (num < MSBN) {
buf[i] = Number(num);
i += 1;
return [buf.slice(offset, i), i];
}
buf[i] = Number((num & 0xFFn) | MSBN);
num >>= SHIFTN;
}
throw new RangeError(`${num} overflows uint64`);
}