std/text/levenshtein_distance.ts

133 lines
3.7 KiB
TypeScript
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
// This module is browser compatible.
const { ceil } = Math;
// This implements Myers' bit-vector algorithm as described here:
// https://dl.acm.org/doi/pdf/10.1145/316542.316550
const peq = new Uint32Array(0x110000);
function myers32(t: string[], p: string[]): number {
const n = t.length;
const m = p.length;
for (let i = 0; i < m; i++) {
peq[p[i]!.codePointAt(0)!]! |= 1 << i;
}
const last = m - 1;
let pv = -1;
let mv = 0;
let score = m;
for (let j = 0; j < n; j++) {
const eq = peq[t[j]!.codePointAt(0)!]!;
const xv = eq | mv;
const xh = (((eq & pv) + pv) ^ pv) | eq;
let ph = mv | ~(xh | pv);
let mh = pv & xh;
score += ((ph >>> last) & 1) - ((mh >>> last) & 1);
// Set the horizontal delta in the first row to +1
// because we are computing the distance between two full strings.
ph = (ph << 1) | 1;
mh = mh << 1;
pv = mh | ~(xv | ph);
mv = ph & xv;
}
for (let i = 0; i < m; i++) {
peq[p[i]!.codePointAt(0)!] = 0;
}
return score;
}
function myersX(t: string[], p: string[]): number {
const n = t.length;
const m = p.length;
// Initialize the horizontal deltas to +1.
const h = new Int8Array(n).fill(1);
const bmax = ceil(m / 32) - 1;
// Process the blocks row by row so that we can use the fixed-size peq array.
for (let b = 0; b < bmax; b++) {
const start = b * 32;
const end = (b + 1) * 32;
for (let i = start; i < end; i++) {
peq[p[i]!.codePointAt(0)!]! |= 1 << i;
}
let pv = -1;
let mv = 0;
for (let j = 0; j < n; j++) {
const hin = h[j]!;
let eq = peq[t[j]!.codePointAt(0)!]!;
const xv = eq | mv;
eq |= hin >>> 31;
const xh = (((eq & pv) + pv) ^ pv) | eq;
let ph = mv | ~(xh | pv);
let mh = pv & xh;
h[j] = (ph >>> 31) - (mh >>> 31);
ph = (ph << 1) | (-hin >>> 31);
mh = (mh << 1) | (hin >>> 31);
pv = mh | ~(xv | ph);
mv = ph & xv;
}
for (let i = start; i < end; i++) {
peq[p[i]!.codePointAt(0)!] = 0;
}
}
const start = bmax * 32;
for (let i = start; i < m; i++) {
peq[p[i]!.codePointAt(0)!]! |= 1 << i;
}
const last = m - 1;
let pv = -1;
let mv = 0;
let score = m;
for (let j = 0; j < n; j++) {
const hin = h[j]!;
let eq = peq[t[j]!.codePointAt(0)!]!;
const xv = eq | mv;
eq |= hin >>> 31;
const xh = (((eq & pv) + pv) ^ pv) | eq;
let ph = mv | ~(xh | pv);
let mh = pv & xh;
score += ((ph >>> last) & 1) - ((mh >>> last) & 1);
ph = (ph << 1) | (-hin >>> 31);
mh = (mh << 1) | (hin >>> 31);
pv = mh | ~(xv | ph);
mv = ph & xv;
}
for (let i = start; i < m; i++) {
peq[p[i]!.codePointAt(0)!] = 0;
}
return score;
}
/**
* Calculates the
* {@link https://en.wikipedia.org/wiki/Levenshtein_distance | Levenshtein distance}
* between two strings.
*
* > [!NOTE]
* > The complexity of this function is O(m * n), where m and n are the lengths
* > of the two strings. It's recommended to limit the length and validate input
* > if arbitrarily accepting input.
*
2024-05-23 17:01:10 +00:00
* @example Usage
* ```ts
* import { levenshteinDistance } from "@std/text/levenshtein-distance";
* import { assertEquals } from "@std/assert";
*
* assertEquals(levenshteinDistance("aa", "bb"), 2);
* ```
* @param str1 The first string.
* @param str2 The second string.
* @returns The Levenshtein distance between the two strings.
*/
export function levenshteinDistance(str1: string, str2: string): number {
let t = [...str1];
let p = [...str2];
if (t.length < p.length) {
[p, t] = [t, p];
}
if (p.length === 0) {
return t.length;
}
return p.length <= 32 ? myers32(t, p) : myersX(t, p);
}