std/data_structures/red_black_tree.ts

408 lines
13 KiB
TypeScript
Raw Normal View History

// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.
// This module is browser compatible.
2023-11-15 10:17:44 +00:00
import { ascend } from "./comparators.ts";
import { BinarySearchTree } from "./binary_search_tree.ts";
import { type Direction, RedBlackNode } from "./_red_black_node.ts";
import { internals } from "./_binary_search_tree_internals.ts";
const {
getRoot,
setRoot,
getCompare,
findNode,
rotateNode,
insertNode,
removeNode,
} = internals;
/**
* A red-black tree. This is a kind of self-balancing binary search tree. The
* values are in ascending order by default, using JavaScript's built-in
* comparison operators to sort the values.
*
* Red-Black Trees require fewer rotations than AVL Trees, so they can provide
* faster insertions and removal operations. If you need faster lookups, you
* should use an AVL Tree instead. AVL Trees are more strictly balanced than
* Red-Black Trees, so they can provide faster lookups.
*
* | Method | Average Case | Worst Case |
* | ------------- | ------------ | ---------- |
* | find(value) | O(log n) | O(log n) |
* | insert(value) | O(log n) | O(log n) |
* | remove(value) | O(log n) | O(log n) |
* | min() | O(log n) | O(log n) |
* | max() | O(log n) | O(log n) |
*
* @example Usage
* ```ts
* import {
* ascend,
* descend,
* RedBlackTree,
* } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const values = [3, 10, 13, 4, 6, 7, 1, 14];
* const tree = new RedBlackTree<number>();
* values.forEach((value) => tree.insert(value));
* assertEquals([...tree], [1, 3, 4, 6, 7, 10, 13, 14]);
* assertEquals(tree.min(), 1);
* assertEquals(tree.max(), 14);
* assertEquals(tree.find(42), null);
* assertEquals(tree.find(7), 7);
* assertEquals(tree.remove(42), false);
* assertEquals(tree.remove(7), true);
* assertEquals([...tree], [1, 3, 4, 6, 10, 13, 14]);
*
* const invertedTree = new RedBlackTree<number>(descend);
* values.forEach((value) => invertedTree.insert(value));
* assertEquals([...invertedTree], [14, 13, 10, 7, 6, 4, 3, 1]);
* assertEquals(invertedTree.min(), 14);
* assertEquals(invertedTree.max(), 1);
* assertEquals(invertedTree.find(42), null);
* assertEquals(invertedTree.find(7), 7);
* assertEquals(invertedTree.remove(42), false);
* assertEquals(invertedTree.remove(7), true);
* assertEquals([...invertedTree], [14, 13, 10, 6, 4, 3, 1]);
*
* const words = new RedBlackTree<string>((a, b) =>
* ascend(a.length, b.length) || ascend(a, b)
* );
* ["truck", "car", "helicopter", "tank", "train", "suv", "semi", "van"]
* .forEach((value) => words.insert(value));
* assertEquals([...words], [
* "car",
* "suv",
* "van",
* "semi",
* "tank",
* "train",
* "truck",
* "helicopter",
* ]);
* assertEquals(words.min(), "car");
* assertEquals(words.max(), "helicopter");
* assertEquals(words.find("scooter"), null);
* assertEquals(words.find("tank"), "tank");
* assertEquals(words.remove("scooter"), false);
* assertEquals(words.remove("tank"), true);
* assertEquals([...words], [
* "car",
* "suv",
* "van",
* "semi",
* "train",
* "truck",
* "helicopter",
* ]);
* ```
*
* @typeparam T The type of the values being stored in the tree.
*/
export class RedBlackTree<T> extends BinarySearchTree<T> {
/**
* Construct an empty red-black tree.
*
* @param compare A custom comparison function for the values. The default comparison function sorts by ascending order.
*/
constructor(compare: (a: T, b: T) => number = ascend) {
if (typeof compare !== "function") {
throw new TypeError(
"Cannot construct a RedBlackTree: the 'compare' parameter is not a function, did you mean to call RedBlackTree.from?",
);
}
super(compare);
}
/**
* Create a new red-black tree from an array like, an iterable object, or
* an existing red-black tree.
*
* A custom comparison function can be provided to sort the values in a
* specific order. By default, the values are sorted in ascending order,
* unless a {@link RedBlackTree} is passed, in which case the comparison
* function is copied from the input tree.
*
* @example Creating a red-black tree from an array like
* ```ts no-assert
* import { RedBlackTree } from "@std/data-structures";
*
* const tree = RedBlackTree.from<number>([3, 10, 13, 4, 6, 7, 1, 14]);
* ```
*
* @example Creating a red-black tree from an iterable object
* ```ts no-assert
* import { RedBlackTree } from "@std/data-structures";
*
* const tree = RedBlackTree.from<number>((function*() {
* yield 3;
* yield 10;
* yield 13;
* })());
* ```
*
* @example Creating a red-black tree from an existing red-black tree
* ```ts no-assert
* import { RedBlackTree } from "@std/data-structures";
*
* const tree = RedBlackTree.from<number>([3, 10, 13, 4, 6, 7, 1, 14]);
* const copy = RedBlackTree.from(tree);
* ```
*
* @example Creating a red-black tree from an array like with a custom comparison function
* ```ts no-assert
* import { RedBlackTree, descend } from "@std/data-structures";
*
* const tree = RedBlackTree.from<number>([3, 10, 13, 4, 6, 7, 1, 14], {
* compare: descend,
* });
* ```
*
* @typeparam T The type of the values being stored in the tree.
* @param collection An array like, an iterable, or existing red-black tree.
* @param options An optional options object to customize the comparison function.
* @returns A new red-black tree with the values from the passed collection.
*/
static override from<T>(
collection: ArrayLike<T> | Iterable<T> | RedBlackTree<T>,
options?: {
compare?: (a: T, b: T) => number;
},
): RedBlackTree<T>;
/**
* Create a new red-black tree from an array like, an iterable object, or
* an existing red-black tree.
*
* A custom mapping function can be provided to transform the values before
* inserting them into the tree.
*
* A custom comparison function can be provided to sort the values in a
* specific order. A custom mapping function can be provided to transform the
* values before inserting them into the tree. By default, the values are
* sorted in ascending order, unless a {@link RedBlackTree} is passed, in
* which case the comparison function is copied from the input tree. The
* comparison operator is used to sort the values in the tree after mapping
* the values.
*
* @example Creating a red-black tree from an array like with a custom mapping function
* ```ts no-assert
* import { RedBlackTree } from "@std/data-structures";
*
* const tree = RedBlackTree.from<number, string>([3, 10, 13, 4, 6, 7, 1, 14], {
* map: (value) => value.toString(),
* });
* ```
* @typeparam T The type of the values in the passed collection.
* @typeparam U The type of the values being stored in the red-black tree.
* @typeparam V The type of the `this` context in the mapping function. Defaults to `undefined`.
* @param collection An array like, an iterable, or existing red-black tree.
* @param options The options object to customize the mapping and comparison functions. The `thisArg` property can be used to set the `this` value when calling the mapping function.
* @returns A new red-black tree with the mapped values from the passed collection.
*/
static override from<T, U, V = undefined>(
collection: ArrayLike<T> | Iterable<T> | RedBlackTree<T>,
options: {
compare?: (a: U, b: U) => number;
map: (value: T, index: number) => U;
thisArg?: V;
},
): RedBlackTree<U>;
static override from<T, U, V>(
collection: ArrayLike<T> | Iterable<T> | RedBlackTree<T>,
options?: {
compare?: (a: U, b: U) => number;
map?: (value: T, index: number) => U;
thisArg?: V;
},
): RedBlackTree<U> {
let result: RedBlackTree<U>;
let unmappedValues: ArrayLike<T> | Iterable<T> = [];
if (collection instanceof RedBlackTree) {
result = new RedBlackTree(
options?.compare ??
getCompare(collection as unknown as RedBlackTree<U>),
);
if (options?.compare || options?.map) {
unmappedValues = collection;
} else {
const nodes: RedBlackNode<U>[] = [];
const root = getRoot(collection);
if (root) {
setRoot(result, root as unknown as RedBlackNode<U>);
nodes.push(root as unknown as RedBlackNode<U>);
}
while (nodes.length) {
const node: RedBlackNode<U> = nodes.pop()!;
const left: RedBlackNode<U> | null = node.left
? RedBlackNode.from(node.left)
: null;
const right: RedBlackNode<U> | null = node.right
? RedBlackNode.from(node.right)
: null;
if (left) {
left.parent = node;
nodes.push(left);
}
if (right) {
right.parent = node;
nodes.push(right);
}
}
}
} else {
result = (options?.compare
? new RedBlackTree(options.compare)
: new RedBlackTree()) as RedBlackTree<U>;
unmappedValues = collection;
}
const values: Iterable<U> = options?.map
? Array.from(unmappedValues, options.map, options.thisArg)
: unmappedValues as U[];
for (const value of values) result.insert(value);
return result;
}
#removeFixup(
parent: RedBlackNode<T> | null,
current: RedBlackNode<T> | null,
) {
while (parent && !current?.red) {
const direction: Direction = parent.left === current ? "left" : "right";
const siblingDirection: Direction = direction === "right"
? "left"
: "right";
let sibling: RedBlackNode<T> | null = parent[siblingDirection];
if (sibling?.red) {
sibling.red = false;
parent.red = true;
rotateNode(this, parent, direction);
sibling = parent[siblingDirection];
}
if (sibling) {
if (!sibling.left?.red && !sibling.right?.red) {
sibling!.red = true;
current = parent;
parent = current.parent;
} else {
if (!sibling[siblingDirection]?.red) {
sibling[direction]!.red = false;
sibling.red = true;
rotateNode(this, sibling, siblingDirection);
sibling = parent[siblingDirection!];
}
sibling!.red = parent.red;
parent.red = false;
sibling![siblingDirection]!.red = false;
rotateNode(this, parent, direction);
current = getRoot(this) as RedBlackNode<T>;
parent = null;
}
}
}
if (current) current.red = false;
}
/**
* Add a value to the red-black tree if it does not already exist in the tree.
*
* The complexity of this operation is on average and at worst O(log n), where
* n is the number of values in the tree.
*
* @example Inserting a value into the tree
* ```ts
* import { RedBlackTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = new RedBlackTree<number>();
*
* assertEquals(tree.insert(42), true);
* assertEquals(tree.insert(42), false);
* ```
*
* @param value The value to insert into the tree.
* @returns `true` if the value was inserted, `false` if the value already exists in the tree.
*/
override insert(value: T): boolean {
let node = insertNode(
this,
RedBlackNode,
value,
) as (RedBlackNode<T> | null);
if (node) {
while (node.parent?.red) {
let parent: RedBlackNode<T> = node.parent!;
const parentDirection: Direction = parent.directionFromParent()!;
const uncleDirection: Direction = parentDirection === "right"
? "left"
: "right";
const uncle: RedBlackNode<T> | null = parent.parent![uncleDirection] ??
null;
if (uncle?.red) {
parent.red = false;
uncle.red = false;
parent.parent!.red = true;
node = parent.parent!;
} else {
if (node === parent[uncleDirection]) {
node = parent;
rotateNode(this, node, parentDirection);
parent = node.parent!;
}
parent.red = false;
parent.parent!.red = true;
rotateNode(this, parent.parent!, uncleDirection);
}
}
(getRoot(this) as RedBlackNode<T>).red = false;
}
return !!node;
}
/**
* Remove a value from the red-black tree if it exists in the tree.
*
* The complexity of this operation is on average and at worst O(log n), where
* n is the number of values in the tree.
*
* @example Removing values from the tree
* ```ts
* import { RedBlackTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = RedBlackTree.from<number>([42]);
*
* assertEquals(tree.remove(42), true);
* assertEquals(tree.remove(42), false);
* ```
*
* @param value The value to remove from the tree.
* @returns `true` if the value was found and removed, `false` if the value was not found in the tree.
*/
override remove(value: T): boolean {
const node = findNode(this, value) as (RedBlackNode<T> | null);
if (!node) {
return false;
}
const removedNode = removeNode(this, node) as (
| RedBlackNode<T>
| null
);
if (removedNode && !removedNode.red) {
this.#removeFixup(
removedNode.parent,
removedNode.left ?? removedNode.right,
);
}
return true;
}
}