rusty_v8/src/support.rs

921 lines
22 KiB
Rust

use std::any::type_name;
use std::any::Any;
use std::borrow::Borrow;
use std::borrow::BorrowMut;
use std::convert::identity;
use std::convert::AsMut;
use std::convert::AsRef;
use std::convert::TryFrom;
use std::fmt::{self, Debug, Formatter};
use std::marker::PhantomData;
use std::mem::align_of;
use std::mem::forget;
use std::mem::needs_drop;
use std::mem::size_of;
use std::mem::take;
use std::mem::transmute_copy;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ptr::drop_in_place;
use std::ptr::null_mut;
use std::ptr::NonNull;
use std::rc::Rc;
use std::sync::Arc;
use std::thread::yield_now;
use std::time::Duration;
use std::time::Instant;
// TODO use libc::intptr_t when stable.
// https://doc.rust-lang.org/1.7.0/libc/type.intptr_t.html
#[allow(non_camel_case_types)]
pub type intptr_t = isize;
pub use std::os::raw::c_char as char;
pub use std::os::raw::c_int as int;
pub use std::os::raw::c_long as long;
pub type Opaque = [u8; 0];
/// Pointer to object allocated on the C++ heap. The pointer may be null.
#[repr(transparent)]
#[derive(Debug)]
pub struct UniquePtr<T: ?Sized>(Option<UniqueRef<T>>);
impl<T: ?Sized> UniquePtr<T> {
pub fn is_null(&self) -> bool {
self.0.is_none()
}
pub fn as_ref(&self) -> Option<&UniqueRef<T>> {
self.0.as_ref()
}
pub fn as_mut(&mut self) -> Option<&mut UniqueRef<T>> {
self.0.as_mut()
}
pub fn take(&mut self) -> Option<UniqueRef<T>> {
take(&mut self.0)
}
pub fn unwrap(self) -> UniqueRef<T> {
self.0.unwrap()
}
}
impl<T> UniquePtr<T> {
pub unsafe fn from_raw(ptr: *mut T) -> Self {
assert_unique_ptr_layout_compatible::<Self, T>();
Self(UniqueRef::try_from_raw(ptr))
}
pub fn into_raw(self) -> *mut T {
self
.0
.map(|unique_ref| unique_ref.into_raw())
.unwrap_or_else(null_mut)
}
}
impl<T: Shared> UniquePtr<T> {
pub fn make_shared(self) -> SharedPtr<T> {
self.into()
}
}
impl<T> Default for UniquePtr<T> {
fn default() -> Self {
assert_unique_ptr_layout_compatible::<Self, T>();
Self(None)
}
}
impl<T> From<UniqueRef<T>> for UniquePtr<T> {
fn from(unique_ref: UniqueRef<T>) -> Self {
assert_unique_ptr_layout_compatible::<Self, T>();
Self(Some(unique_ref))
}
}
/// Pointer to object allocated on the C++ heap. The pointer may not be null.
#[repr(transparent)]
#[derive(Debug)]
pub struct UniqueRef<T: ?Sized>(NonNull<T>);
impl<T> UniqueRef<T> {
pub(crate) unsafe fn try_from_raw(ptr: *mut T) -> Option<Self> {
assert_unique_ptr_layout_compatible::<Self, T>();
NonNull::new(ptr).map(Self)
}
pub(crate) unsafe fn from_raw(ptr: *mut T) -> Self {
assert_unique_ptr_layout_compatible::<Self, T>();
Self::try_from_raw(ptr).unwrap()
}
pub fn into_raw(self) -> *mut T {
let ptr = self.0.as_ptr();
forget(self);
ptr
}
}
impl<T: Shared> UniqueRef<T> {
pub fn make_shared(self) -> SharedRef<T> {
self.into()
}
}
impl<T: ?Sized> Drop for UniqueRef<T> {
fn drop(&mut self) {
unsafe { drop_in_place(self.0.as_ptr()) }
}
}
impl<T: ?Sized> Deref for UniqueRef<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { self.0.as_ref() }
}
}
impl<T: ?Sized> DerefMut for UniqueRef<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { self.0.as_mut() }
}
}
impl<T: ?Sized> AsRef<T> for UniqueRef<T> {
fn as_ref(&self) -> &T {
&**self
}
}
impl<T: ?Sized> AsMut<T> for UniqueRef<T> {
fn as_mut(&mut self) -> &mut T {
&mut **self
}
}
impl<T: ?Sized> Borrow<T> for UniqueRef<T> {
fn borrow(&self) -> &T {
&**self
}
}
impl<T: ?Sized> BorrowMut<T> for UniqueRef<T> {
fn borrow_mut(&mut self) -> &mut T {
&mut **self
}
}
fn assert_unique_ptr_layout_compatible<U, T>() {
// Assert that `U` (a `UniqueRef` or `UniquePtr`) has the same memory layout
// as a raw C pointer.
assert_eq!(size_of::<U>(), size_of::<*mut T>());
assert_eq!(align_of::<U>(), align_of::<*mut T>());
// Assert that `T` (probably) implements `Drop`. If it doesn't, a regular
// reference should be used instead of UniquePtr/UniqueRef.
assert!(needs_drop::<T>());
}
pub trait Shared
where
Self: Sized,
{
fn clone(shared_ptr: &SharedPtrBase<Self>) -> SharedPtrBase<Self>;
fn from_unique_ptr(unique_ptr: UniquePtr<Self>) -> SharedPtrBase<Self>;
fn get(shared_ptr: &SharedPtrBase<Self>) -> *const Self;
fn reset(shared_ptr: &mut SharedPtrBase<Self>);
fn use_count(shared_ptr: &SharedPtrBase<Self>) -> long;
}
/// Private base type which is shared by the `SharedPtr` and `SharedRef`
/// implementations.
#[repr(C)]
#[derive(Eq, Debug, PartialEq)]
pub struct SharedPtrBase<T: Shared>([usize; 2], PhantomData<T>);
unsafe impl<T: Shared + Sync> Send for SharedPtrBase<T> {}
unsafe impl<T: Shared + Sync> Sync for SharedPtrBase<T> {}
impl<T: Shared> Default for SharedPtrBase<T> {
fn default() -> Self {
Self([0usize; 2], PhantomData)
}
}
impl<T: Shared> Drop for SharedPtrBase<T> {
fn drop(&mut self) {
<T as Shared>::reset(self);
}
}
/// Wrapper around a C++ shared_ptr. A shared_ptr may be be null.
#[repr(C)]
#[derive(Debug)]
pub struct SharedPtr<T: Shared>(SharedPtrBase<T>);
impl<T: Shared> SharedPtr<T> {
/// Asserts that the number of references to the shared inner value is equal
/// to the `expected` count.
///
/// This function relies on the C++ method `std::shared_ptr::use_count()`,
/// which usually performs a relaxed load. This function will repeatedly call
/// `use_count()` until it returns the expected value, for up to one second.
/// Therefore it should probably not be used in performance critical code.
#[track_caller]
pub fn assert_use_count_eq(&self, expected: usize) {
assert_shared_ptr_use_count_eq("SharedPtr", &self.0, expected);
}
pub fn is_null(&self) -> bool {
<T as Shared>::get(&self.0).is_null()
}
pub fn take(&mut self) -> Option<SharedRef<T>> {
if self.is_null() {
None
} else {
let base = take(&mut self.0);
Some(SharedRef(base))
}
}
pub fn unwrap(self) -> SharedRef<T> {
assert!(!self.is_null());
SharedRef(self.0)
}
}
impl<T: Shared> Clone for SharedPtr<T> {
fn clone(&self) -> Self {
Self(<T as Shared>::clone(&self.0))
}
}
impl<T: Shared> Default for SharedPtr<T> {
fn default() -> Self {
Self(Default::default())
}
}
impl<T, U> From<U> for SharedPtr<T>
where
T: Shared,
U: Into<UniquePtr<T>>,
{
fn from(unique_ptr: U) -> Self {
let unique_ptr = unique_ptr.into();
Self(<T as Shared>::from_unique_ptr(unique_ptr))
}
}
impl<T: Shared> From<SharedRef<T>> for SharedPtr<T> {
fn from(mut shared_ref: SharedRef<T>) -> Self {
Self(take(&mut shared_ref.0))
}
}
/// Wrapper around a C++ shared_ptr. The shared_ptr is assumed to contain a
/// value and may not be null.
#[repr(C)]
#[derive(Debug)]
pub struct SharedRef<T: Shared>(SharedPtrBase<T>);
impl<T: Shared> SharedRef<T> {
/// Asserts that the number of references to the shared inner value is equal
/// to the `expected` count.
///
/// This function relies on the C++ method `std::shared_ptr::use_count()`,
/// which usually performs a relaxed load. This function will repeatedly call
/// `use_count()` until it returns the expected value, for up to one second.
/// Therefore it should probably not be used in performance critical code.
#[track_caller]
pub fn assert_use_count_eq(&self, expected: usize) {
assert_shared_ptr_use_count_eq("SharedRef", &self.0, expected);
}
}
impl<T: Shared> Clone for SharedRef<T> {
fn clone(&self) -> Self {
Self(<T as Shared>::clone(&self.0))
}
}
impl<T: Shared> From<UniqueRef<T>> for SharedRef<T> {
fn from(unique_ref: UniqueRef<T>) -> Self {
SharedPtr::from(unique_ref).unwrap()
}
}
impl<T: Shared> Deref for SharedRef<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
unsafe { &*(<T as Shared>::get(&self.0)) }
}
}
impl<T: Shared> AsRef<T> for SharedRef<T> {
fn as_ref(&self) -> &T {
&**self
}
}
impl<T: Shared> Borrow<T> for SharedRef<T> {
fn borrow(&self) -> &T {
&**self
}
}
#[track_caller]
fn assert_shared_ptr_use_count_eq<T: Shared>(
wrapper_type_name: &str,
shared_ptr: &SharedPtrBase<T>,
expected: usize,
) {
let mut actual = T::use_count(shared_ptr);
let ok = match long::try_from(expected) {
Err(_) => false, // Non-`long` value can never match actual use count.
Ok(expected) if actual == expected => true, // Fast path.
Ok(expected) => {
pub const RETRY_TIMEOUT: Duration = Duration::from_secs(1);
let start = Instant::now();
loop {
yield_now();
actual = T::use_count(shared_ptr);
if actual == expected {
break true;
} else if start.elapsed() > RETRY_TIMEOUT {
break false;
}
}
}
};
assert!(
ok,
"assertion failed: `{}<{}>` reference count does not match expectation\
\n actual: {}\
\n expected: {}",
wrapper_type_name,
type_name::<T>(),
actual,
expected
);
}
/// A trait for values with static lifetimes that are allocated at a fixed
/// address in memory. Practically speaking, that means they're either a
/// `&'static` reference, or they're heap-allocated in a `Arc`, `Box`, `Rc`,
/// `UniqueRef`, `SharedRef` or `Vec`.
pub trait Allocated<T: ?Sized>:
Deref<Target = T> + Borrow<T> + 'static
{
}
impl<A, T: ?Sized> Allocated<T> for A where
A: Deref<Target = T> + Borrow<T> + 'static
{
}
pub(crate) enum Allocation<T: ?Sized + 'static> {
Static(&'static T),
Arc(Arc<T>),
Box(Box<T>),
Rc(Rc<T>),
UniqueRef(UniqueRef<T>),
Other(Box<dyn Borrow<T> + 'static>),
// Note: it would be nice to add `SharedRef` to this list, but it
// requires the `T: Shared` bound, and it's unfortunately not possible
// to set bounds on individual enum variants.
}
impl<T: ?Sized + 'static> Allocation<T> {
unsafe fn transmute_wrap<Abstract, Concrete>(
value: Abstract,
wrap: fn(Concrete) -> Self,
) -> Self {
assert_eq!(size_of::<Abstract>(), size_of::<Concrete>());
let wrapped = wrap(transmute_copy(&value));
forget(value);
wrapped
}
fn try_wrap<Abstract: 'static, Concrete: 'static>(
value: Abstract,
wrap: fn(Concrete) -> Self,
) -> Result<Self, Abstract> {
if <dyn Any>::is::<Concrete>(&value) {
Ok(unsafe { Self::transmute_wrap(value, wrap) })
} else {
Err(value)
}
}
pub fn of<Abstract: Deref<Target = T> + Borrow<T> + 'static>(
a: Abstract,
) -> Self {
Self::try_wrap(a, identity)
.or_else(|a| Self::try_wrap(a, Self::Static))
.or_else(|a| Self::try_wrap(a, Self::Arc))
.or_else(|a| Self::try_wrap(a, Self::Box))
.or_else(|a| Self::try_wrap(a, Self::Rc))
.or_else(|a| Self::try_wrap(a, Self::UniqueRef))
.unwrap_or_else(|a| Self::Other(Box::from(a)))
}
}
impl<T: Debug + ?Sized> Debug for Allocation<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Allocation::Arc(r) => f.debug_tuple("Arc").field(&r).finish(),
Allocation::Box(b) => f.debug_tuple("Box").field(&b).finish(),
Allocation::Other(_) => f.debug_tuple("Other").finish(),
Allocation::Rc(r) => f.debug_tuple("Rc").field(&r).finish(),
Allocation::Static(s) => f.debug_tuple("Static").field(&s).finish(),
Allocation::UniqueRef(u) => f.debug_tuple("UniqueRef").field(&u).finish(),
}
}
}
impl<T: ?Sized> Deref for Allocation<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
match self {
Self::Static(v) => v.borrow(),
Self::Arc(v) => v.borrow(),
Self::Box(v) => v.borrow(),
Self::Rc(v) => v.borrow(),
Self::UniqueRef(v) => v.borrow(),
Self::Other(v) => (&**v).borrow(),
}
}
}
impl<T: ?Sized> AsRef<T> for Allocation<T> {
fn as_ref(&self) -> &T {
&**self
}
}
impl<T: ?Sized> Borrow<T> for Allocation<T> {
fn borrow(&self) -> &T {
&**self
}
}
#[repr(C)]
#[derive(Debug, PartialEq)]
pub enum MaybeBool {
JustFalse = 0,
JustTrue = 1,
Nothing = 2,
}
impl From<MaybeBool> for Option<bool> {
fn from(b: MaybeBool) -> Self {
match b {
MaybeBool::JustFalse => Some(false),
MaybeBool::JustTrue => Some(true),
MaybeBool::Nothing => None,
}
}
}
impl From<Option<bool>> for MaybeBool {
fn from(option: Option<bool>) -> Self {
match option {
Some(false) => MaybeBool::JustFalse,
Some(true) => MaybeBool::JustTrue,
None => MaybeBool::Nothing,
}
}
}
#[derive(Copy, Clone, Debug)]
#[repr(transparent)]
pub struct CxxVTable(pub *const Opaque);
#[derive(Copy, Clone, Debug)]
pub struct RustVTable<DynT>(pub *const Opaque, pub PhantomData<DynT>);
#[derive(Debug)]
pub struct FieldOffset<F>(usize, PhantomData<F>);
unsafe impl<F> Send for FieldOffset<F> where F: Send {}
unsafe impl<F> Sync for FieldOffset<F> where F: Sync {}
impl<F> Copy for FieldOffset<F> {}
impl<F> Clone for FieldOffset<F> {
fn clone(&self) -> Self {
Self(self.0, self.1)
}
}
impl<F> FieldOffset<F> {
pub fn from_ptrs<E>(embedder_ptr: *const E, field_ptr: *const F) -> Self {
let embedder_addr = embedder_ptr as usize;
let field_addr = field_ptr as usize;
assert!(field_addr >= embedder_addr);
assert!((field_addr + size_of::<F>()) <= (embedder_addr + size_of::<E>()));
Self(field_addr - embedder_addr, PhantomData)
}
#[allow(clippy::wrong_self_convention)]
pub unsafe fn to_embedder<E>(self, field: &F) -> &E {
(((field as *const _ as usize) - self.0) as *const E)
.as_ref()
.unwrap()
}
#[allow(clippy::wrong_self_convention)]
pub unsafe fn to_embedder_mut<E>(self, field: &mut F) -> &mut E {
(((field as *mut _ as usize) - self.0) as *mut E)
.as_mut()
.unwrap()
}
}
#[repr(C)]
#[derive(Debug, Default)]
pub struct Maybe<T> {
has_value: bool,
value: T,
}
impl<T> From<Maybe<T>> for Option<T> {
fn from(maybe: Maybe<T>) -> Self {
if maybe.has_value {
Some(maybe.value)
} else {
None
}
}
}
pub trait UnitType
where
Self: Copy + Sized,
{
#[inline(always)]
fn get() -> Self {
UnitValue::<Self>::get()
}
}
impl<T> UnitType for T where T: Copy + Sized {}
#[derive(Copy, Clone, Debug)]
struct UnitValue<T>(PhantomData<T>)
where
Self: Sized;
impl<T> UnitValue<T>
where
Self: Copy + Sized,
{
const SELF: Self = Self::new_checked();
const fn new_checked() -> Self {
// Statically assert that T is indeed a unit type.
let size_must_be_0 = size_of::<T>();
let s = Self(PhantomData::<T>);
[s][size_must_be_0]
}
#[inline(always)]
fn get_checked(self) -> T {
// This run-time check serves just as a backup for the compile-time
// check when Self::SELF is initialized.
assert_eq!(size_of::<T>(), 0);
unsafe { std::mem::MaybeUninit::<T>::zeroed().assume_init() }
}
#[inline(always)]
pub fn get() -> T {
// Accessing the Self::SELF is necessary to make the compile-time type check
// work.
Self::SELF.get_checked()
}
}
#[derive(Debug)]
pub struct DefaultTag;
#[derive(Debug)]
pub struct IdenticalConversionTag;
pub trait MapFnFrom<F, Tag = DefaultTag>
where
F: UnitType,
Self: Sized,
{
fn mapping() -> Self;
#[inline(always)]
fn map_fn_from(_: F) -> Self {
Self::mapping()
}
}
impl<F> MapFnFrom<F, IdenticalConversionTag> for F
where
Self: UnitType,
{
#[inline(always)]
fn mapping() -> Self {
Self::get()
}
}
pub trait MapFnTo<T, Tag = DefaultTag>
where
Self: UnitType,
T: Sized,
{
fn mapping() -> T;
#[inline(always)]
fn map_fn_to(self) -> T {
Self::mapping()
}
}
impl<F, T, Tag> MapFnTo<T, Tag> for F
where
Self: UnitType,
T: MapFnFrom<F, Tag>,
{
#[inline(always)]
fn mapping() -> T {
T::map_fn_from(F::get())
}
}
pub trait CFnFrom<F>
where
Self: Sized,
F: UnitType,
{
fn mapping() -> Self;
#[inline(always)]
fn c_fn_from(_: F) -> Self {
Self::mapping()
}
}
macro_rules! impl_c_fn_from {
($($arg:ident: $ty:ident),*) => {
impl<F, R, $($ty),*> CFnFrom<F> for extern "C" fn($($ty),*) -> R
where
F: UnitType + Fn($($ty),*) -> R,
{
#[inline(always)]
fn mapping() -> Self {
extern "C" fn c_fn<F, R, $($ty),*>($($arg: $ty),*) -> R
where
F: UnitType + Fn($($ty),*) -> R,
{
(F::get())($($arg),*)
}
c_fn::<F, R, $($ty),*>
}
}
};
}
impl_c_fn_from!();
impl_c_fn_from!(a0: A0);
impl_c_fn_from!(a0: A0, a1: A1);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4, a5: A5);
impl_c_fn_from!(a0: A0, a1: A1, a2: A2, a3: A3, a4: A4, a5: A5, a6: A6);
pub trait ToCFn<T>
where
Self: UnitType,
T: Sized,
{
fn mapping() -> T;
#[inline(always)]
fn to_c_fn(self) -> T {
Self::mapping()
}
}
impl<F, T> ToCFn<T> for F
where
Self: UnitType,
T: CFnFrom<F>,
{
#[inline(always)]
fn mapping() -> T {
T::c_fn_from(F::get())
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::ptr::null;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
#[derive(Eq, PartialEq)]
struct MockSharedObj {
pub inner: u32,
}
impl MockSharedObj {
const INSTANCE_A: Self = Self { inner: 11111 };
const INSTANCE_B: Self = Self { inner: 22222 };
const SHARED_PTR_BASE_A: SharedPtrBase<Self> =
SharedPtrBase([1, 1], PhantomData);
const SHARED_PTR_BASE_B: SharedPtrBase<Self> =
SharedPtrBase([2, 2], PhantomData);
}
impl Shared for MockSharedObj {
fn clone(_: &SharedPtrBase<Self>) -> SharedPtrBase<Self> {
unimplemented!()
}
fn from_unique_ptr(_: UniquePtr<Self>) -> SharedPtrBase<Self> {
unimplemented!()
}
fn get(p: &SharedPtrBase<Self>) -> *const Self {
match p {
&Self::SHARED_PTR_BASE_A => &Self::INSTANCE_A,
&Self::SHARED_PTR_BASE_B => &Self::INSTANCE_B,
p if p == &Default::default() => null(),
_ => unreachable!(),
}
}
fn reset(p: &mut SharedPtrBase<Self>) {
forget(take(p));
}
fn use_count(p: &SharedPtrBase<Self>) -> long {
match p {
&Self::SHARED_PTR_BASE_A => 1,
&Self::SHARED_PTR_BASE_B => 2,
p if p == &Default::default() => 0,
_ => unreachable!(),
}
}
}
#[test]
fn shared_ptr_and_shared_ref() {
let mut shared_ptr_a1 = SharedPtr(MockSharedObj::SHARED_PTR_BASE_A);
assert!(!shared_ptr_a1.is_null());
shared_ptr_a1.assert_use_count_eq(1);
let shared_ref_a: SharedRef<_> = shared_ptr_a1.take().unwrap();
assert_eq!(shared_ref_a.inner, 11111);
shared_ref_a.assert_use_count_eq(1);
assert!(shared_ptr_a1.is_null());
shared_ptr_a1.assert_use_count_eq(0);
let shared_ptr_a2: SharedPtr<_> = shared_ref_a.into();
assert!(!shared_ptr_a2.is_null());
shared_ptr_a2.assert_use_count_eq(1);
assert_eq!(shared_ptr_a2.unwrap().inner, 11111);
let mut shared_ptr_b1 = SharedPtr(MockSharedObj::SHARED_PTR_BASE_B);
assert!(!shared_ptr_b1.is_null());
shared_ptr_b1.assert_use_count_eq(2);
let shared_ref_b: SharedRef<_> = shared_ptr_b1.take().unwrap();
assert_eq!(shared_ref_b.inner, 22222);
shared_ref_b.assert_use_count_eq(2);
assert!(shared_ptr_b1.is_null());
shared_ptr_b1.assert_use_count_eq(0);
let shared_ptr_b2: SharedPtr<_> = shared_ref_b.into();
assert!(!shared_ptr_b2.is_null());
shared_ptr_b2.assert_use_count_eq(2);
assert_eq!(shared_ptr_b2.unwrap().inner, 22222);
}
#[test]
#[should_panic(expected = "assertion failed: \
`SharedPtr<v8::support::tests::MockSharedObj>` reference count \
does not match expectation")]
fn shared_ptr_use_count_assertion_failed() {
let shared_ptr: SharedPtr<MockSharedObj> = Default::default();
shared_ptr.assert_use_count_eq(3);
}
#[test]
#[should_panic(expected = "assertion failed: \
`SharedRef<v8::support::tests::MockSharedObj>` reference count \
does not match expectation")]
fn shared_ref_use_count_assertion_failed() {
let shared_ref = SharedRef(MockSharedObj::SHARED_PTR_BASE_B);
shared_ref.assert_use_count_eq(7);
}
static TEST_OBJ_DROPPED: AtomicBool = AtomicBool::new(false);
struct TestObj {
pub id: u32,
}
impl Drop for TestObj {
fn drop(&mut self) {
assert!(!TEST_OBJ_DROPPED.swap(true, Ordering::SeqCst));
}
}
struct TestObjRef(TestObj);
impl Deref for TestObjRef {
type Target = TestObj;
fn deref(&self) -> &TestObj {
&self.0
}
}
impl Borrow<TestObj> for TestObjRef {
fn borrow(&self) -> &TestObj {
&**self
}
}
#[test]
fn allocation() {
// Static.
static STATIC_OBJ: TestObj = TestObj { id: 1 };
let owner = Allocation::of(&STATIC_OBJ);
match owner {
Allocation::Static(_) => assert_eq!(owner.id, 1),
_ => panic!(),
}
drop(owner);
assert!(!TEST_OBJ_DROPPED.load(Ordering::SeqCst));
// Arc.
let owner = Allocation::of(Arc::new(TestObj { id: 2 }));
match owner {
Allocation::Arc(_) => assert_eq!(owner.id, 2),
_ => panic!(),
}
drop(owner);
assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));
// Box.
let owner = Allocation::of(Box::new(TestObj { id: 3 }));
match owner {
Allocation::Box(_) => assert_eq!(owner.id, 3),
_ => panic!(),
}
drop(owner);
assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));
// Rc.
let owner = Allocation::of(Rc::new(TestObj { id: 4 }));
match owner {
Allocation::Rc(_) => assert_eq!(owner.id, 4),
_ => panic!(),
}
drop(owner);
assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));
// Other.
let owner = Allocation::of(TestObjRef(TestObj { id: 5 }));
match owner {
Allocation::Other(_) => assert_eq!(owner.id, 5),
_ => panic!(),
}
drop(owner);
assert!(TEST_OBJ_DROPPED.swap(false, Ordering::SeqCst));
// Contents of Vec should not be moved.
let vec = vec![1u8, 2, 3, 5, 8, 13, 21];
let vec_element_ptrs =
vec.iter().map(|i| i as *const u8).collect::<Vec<_>>();
let owner = Allocation::of(vec);
match owner {
Allocation::Other(_) => {}
_ => panic!(),
}
owner
.iter()
.map(|i| i as *const u8)
.zip(vec_element_ptrs)
.for_each(|(p1, p2)| assert_eq!(p1, p2));
}
}